A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller
نویسندگان
چکیده
The aim of this work is to develop a magnetorheological brake (MRB) system that has performance advantages over the conventional hydraulic brake system. The proposed brake system consists of rotating disks immersed in a MR fluid and enclosed in an electromagnet, which the yield stress of the fluid varies as a function of the magnetic field applied by the electromagnet. The controllable yield stress causes friction on the rotating disk surfaces, thus generating a retarding brake torque. The braking torque can be precisely controlled by changing the current applied to the electromagnet. In this paper, an optimum MRB design with two rotating disks is proposed based on a design optimization procedure using simulated annealing combined with finite element simulations involving magnetostatic, fluid flow and heat transfer analysis. The performance of the MRB in a vehicle was studied using a quarter vehicle model. A sliding mode controller was designed for an optimal wheel slip control, and the control simulation results show fast anti-lock braking. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
An adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system
In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...
متن کاملA new semi-active magnetorheological engine mounts for improving vehicle ride comfort using sliding mode controller
Abstract Inthispaper,anewsemi-activemagnetorheological(MR)enginemountinhalfcarmodelisproposed for improving ride comfort. Such a model uses a dynamic sliding mode controller. It operates as a controller system for controlling the magnetic field strength of the engine mount coil. Controlling the magnetic field strength leads to change the magnetorheological liquid properties and thereby the gene...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملFractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition
In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کامل